Sunday, 13 January 2013

Multiplication of Vector Using Matlab

SPECIAL PRODUCT
vector is a unit having both scalar and magnitude while scalar only have magnitude.
let say we have 2 vector  a=i+2j+3k and b=4i+5j+6k
Using:
1. dot (vector dot vector=scalar)
   y= a.b
     =( (1x4)+(2x5)+(3x6) ) 
     = 32
   matlab command: y=dot(a,b)

2. cross(vector cross vector=vector)
    z=axb
     =(a12b13-a13b12)i - (a11b13-a13b11)j + (a11b12-a12b11)k
     =[ (2x6)-(5x3)]i - [(1x6)-(3x4)]j + [(1x5)-(2x4)]k
     =-3i + 6j -3k
     matlab command: z=cross(a,b)

MULTIPLICATION
2x+9y=5 and 3x-4y=7 can be written as A=[2,9;3,-4] and B=[5;7]

Can be express in form of Ax=B 
where A=[2,9;3,-4]   B=[5;7]    x=[x;y]
Theoretically x=A-1B
    where inverse A, A-1=(1/|determinant A|) x (matrix A but swap position of a11 with a22 and put  negative to both)
    determinant A=|A|=(a11 x a22)-(a12 x a21)

Using matlab, can use either: 
    i. x=A\B   %(backslash)
    ii. x=inv(A)*B    % x=A-1B
    ans: x=2.3714, y=0.0286

No comments:

Post a Comment